Structural analysis of the Candida albicans mitochondrial DNA maintenance factor Gcf1p reveals a dynamic DNA-bridging mechanism.

Tarrés-Solé A, Battistini F, Gerhold JM, Piétrement O, Martínez-García B, Ruiz-López E, Lyonnais S, Bernadó P, Roca J, Orozco M, Le Cam E, Sedman J, Solà M, Nucleic Acids Res (2023) Europe PMC

SASDPZ5 – Gcf1p protein bound to DNA at 1.0 mg/mL

Gcf1p
Af2_20 DNA
MWexperimental 39 kDa
MWexpected 38 kDa
VPorod 92 nm3
log I(s) 8.80×10-2 8.80×10-3 8.80×10-4 8.80×10-5
Gcf1p Af2_20 DNA small angle scattering data  s, nm-1
ln I(s)
Gcf1p Af2_20 DNA Guinier plot ln 8.81×10-2 Rg: 3.6 nm 0 (3.6 nm)-2 s2
(sRg)2I(s)/I(0)
Gcf1p Af2_20 DNA Kratky plot 1.104 0 3 sRg
Dmax: 16 nm

Data validation


Fits and models


log I(s)
 s, nm-1
Gcf1p Af2_20 DNA WAXSIS model
Gcf1p Af2_20 DNA WAXSIS model
Gcf1p Af2_20 DNA WAXSIS model

Synchrotron SAXS data from solutions of Gcf1p protein bound to DNA in 25 mM Tris, 20 mM NaCl, pH 8 were collected on the EMBL P12 beam line at PETRA III (DESY, Hamburg, Germany) using a Eiger 4M detector at a sample-detector distance of 3 m and at a wavelength of λ = 0.124 nm (I(s) vs s, where s = 4πsinθ/λ, and 2θ is the scattering angle). A solute concentration of 1 mg/ml was measured at 10°C. 40 successive 0.045 second frames were collected. The data were normalized to the intensity of the transmitted beam and radially averaged; the scattering of the solvent-blank was subtracted.

Gcf1p
Mol. type   Protein
Organism   Candida albicans (strain SC5314 / ATCC MYA-2876)
Olig. state   Monomer
Mon. MW   26.0 kDa
 
UniProt   Q59QB8 (25-245)
Sequence   FASTA
 
Af2_20 DNA
Mol. type   DNA
Olig. state   Monomer
Mon. MW   12.4 kDa
Sequence   FASTA