Search

 
Advanced search  

14 hits found for Proline dehydrogenase

SASDDL2 – ...Proline Utilization A (PutA) lowest concentration, 1.00 mg/ml

Sinorhizobium meliloti (SmPutA) experimental SAS data
MES-FOXS model
Sample: Sinorhizobium meliloti (SmPutA) monomer, 132 kDa Sinorhizobium meliloti protein
Buffer: 50 mM Tris, 1% (v/v) glycerol, 0.5 mM THP, and 50 mM NaCl, pH: 7.8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2014 Mar 27
...Proline Utilization A (PutA) Reveal the Fold and Functions of the Aldehyde Dehydrogenase Superfamily Domain of Unknown Function. J Biol Chem 291(46):24065-24075 (2016)
Luo M, Gamage TT, Arentson BW, Schlasner KN, Becker DF, Tanner JJ
RgGuinier 3.4 nm
Dmax 11.0 nm
VolumePorod 171 nm3

SASDDM2 – ...Proline Utilization A (PutA) at 2.00 mg/ml

Sinorhizobium meliloti (SmPutA) experimental SAS data
MES-FOXS model
Sample: Sinorhizobium meliloti (SmPutA) monomer, 132 kDa Sinorhizobium meliloti protein
Buffer: 50 mM Tris, 1% (v/v) glycerol, 0.5 mM THP, and 50 mM NaCl, pH: 7.8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2014 Mar 27
...Proline Utilization A (PutA) Reveal the Fold and Functions of the Aldehyde Dehydrogenase Superfamily Domain of Unknown Function. J Biol Chem 291(46):24065-24075 (2016)
Luo M, Gamage TT, Arentson BW, Schlasner KN, Becker DF, Tanner JJ
RgGuinier 3.8 nm
Dmax 11.9 nm
VolumePorod 225 nm3

SASDDN2 – ...Proline Utilization A (PutA) at 3.00 mg/ml

Sinorhizobium meliloti (SmPutA) experimental SAS data
MES-FOXS model
Sample: Sinorhizobium meliloti (SmPutA) monomer, 132 kDa Sinorhizobium meliloti protein
Buffer: 50 mM Tris, 1% (v/v) glycerol, 0.5 mM THP, and 50 mM NaCl, pH: 7.8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2014 Mar 27
...Proline Utilization A (PutA) Reveal the Fold and Functions of the Aldehyde Dehydrogenase Superfamily Domain of Unknown Function. J Biol Chem 291(46):24065-24075 (2016)
Luo M, Gamage TT, Arentson BW, Schlasner KN, Becker DF, Tanner JJ
RgGuinier 3.8 nm
Dmax 11.8 nm
VolumePorod 248 nm3

SASDDP2 – ...Proline Utilization A (PutA) at high concentration, 4.00 mg/ml

Sinorhizobium meliloti (SmPutA) experimental SAS data
MES-FOXS model
Sample: Sinorhizobium meliloti (SmPutA) monomer, 132 kDa Sinorhizobium meliloti protein
Buffer: 50 mM Tris, 1% (v/v) glycerol, 0.5 mM THP, and 50 mM NaCl, pH: 7.8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2014 Mar 27
...Proline Utilization A (PutA) Reveal the Fold and Functions of the Aldehyde Dehydrogenase Superfamily Domain of Unknown Function. J Biol Chem 291(46):24065-24075 (2016)
Luo M, Gamage TT, Arentson BW, Schlasner KN, Becker DF, Tanner JJ
RgGuinier 3.9 nm
Dmax 11.9 nm
VolumePorod 277 nm3

SASDCS3Proline utilization A from Bradyrhizobium diazoefficiens (formerly Bradyrhizobium japonicum) 2.3 mg/mL

Proline dehydrogenase experimental SAS data
Proline dehydrogenase Kratky plot
Sample: Proline dehydrogenase tetramer, 430 kDa Bradyrhizobium diazoefficiens protein
Buffer: 50 mM Tris (pH 7.8), 50 mM NaCl, 0.5 mM Tris(2-carboxyethyl)phosphine, and 5% (v/v) glycerol, pH: 7.8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2016 Dec 16
Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure. FEBS J 284(18):3029-3049 (2017)
Korasick DA, Singh H, Pemberton TA, Luo M, Dhatwalia R, Tanner JJ
RgGuinier 5.3 nm
Dmax 14.1 nm
VolumePorod 541 nm3

SASDCT3Proline utilization A from Bradyrhizobium diazoefficiens (formerly Bradyrhizobium japonicum) 4.7 mg/mL

Proline dehydrogenase experimental SAS data
Proline dehydrogenase Kratky plot
Sample: Proline dehydrogenase tetramer, 430 kDa Bradyrhizobium diazoefficiens protein
Buffer: 50 mM Tris (pH 7.8), 50 mM NaCl, 0.5 mM Tris(2-carboxyethyl)phosphine, and 5% (v/v) glycerol, pH: 7.8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2016 Dec 12
Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure. FEBS J 284(18):3029-3049 (2017)
Korasick DA, Singh H, Pemberton TA, Luo M, Dhatwalia R, Tanner JJ
RgGuinier 5.2 nm
Dmax 14.6 nm
VolumePorod 553 nm3

SASDCU3Proline utilization A from Bradyrhizobium diazoefficiens (formerly Bradyrhizobium japonicum) 7.0 mg/mL

Proline dehydrogenase experimental SAS data
DAMMIF model
Sample: Proline dehydrogenase tetramer, 430 kDa Bradyrhizobium diazoefficiens protein
Buffer: 50 mM Tris (pH 7.8), 50 mM NaCl, 0.5 mM Tris(2-carboxyethyl)phosphine, and 5% (v/v) glycerol, pH: 7.8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2016 Dec 12
Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure. FEBS J 284(18):3029-3049 (2017)
Korasick DA, Singh H, Pemberton TA, Luo M, Dhatwalia R, Tanner JJ
RgGuinier 5.2 nm
Dmax 13.7 nm
VolumePorod 560 nm3

SASDCZ3Proline utilization A from Bradyrhizobium diazoefficiens (formerly Bradyrhizobium japonicum) R51E mutant 2.3 mg/mL

Proline dehydrogenase experimental SAS data
Proline dehydrogenase Kratky plot
Sample: Proline dehydrogenase dimer, 215 kDa Bradyrhizobium diazoefficiens protein
Buffer: 50 mM Tris (pH 7.8), 50 mM NaCl, 0.5 mM Tris(2-carboxyethyl)phosphine, and 5% (v/v) glycerol, pH: 7.8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2016 Dec 16
Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure. FEBS J 284(18):3029-3049 (2017)
Korasick DA, Singh H, Pemberton TA, Luo M, Dhatwalia R, Tanner JJ
RgGuinier 4.5 nm
Dmax 14.5 nm
VolumePorod 281 nm3

SASDC24Proline utilization A from Bradyrhizobium diazoefficiens (formerly Bradyrhizobium japonicum) R51E mutant 4.7 mg/mL

Proline dehydrogenase experimental SAS data
Proline dehydrogenase Kratky plot
Sample: Proline dehydrogenase dimer, 215 kDa Bradyrhizobium diazoefficiens protein
Buffer: 50 mM Tris (pH 7.8), 50 mM NaCl, 0.5 mM Tris(2-carboxyethyl)phosphine, and 5% (v/v) glycerol, pH: 7.8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2016 Dec 16
Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure. FEBS J 284(18):3029-3049 (2017)
Korasick DA, Singh H, Pemberton TA, Luo M, Dhatwalia R, Tanner JJ
RgGuinier 4.5 nm
Dmax 13.9 nm
VolumePorod 283 nm3

SASDC34Proline utilization A from Bradyrhizobium diazoefficiens (formerly Bradyrhizobium japonicum) R51E mutant 7.0 mg/mL

Proline dehydrogenase experimental SAS data
DAMMIF model
Sample: Proline dehydrogenase dimer, 215 kDa Bradyrhizobium diazoefficiens protein
Buffer: 50 mM Tris (pH 7.8), 50 mM NaCl, 0.5 mM Tris(2-carboxyethyl)phosphine, and 5% (v/v) glycerol, pH: 7.8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2016 Dec 16
Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure. FEBS J 284(18):3029-3049 (2017)
Korasick DA, Singh H, Pemberton TA, Luo M, Dhatwalia R, Tanner JJ
RgGuinier 4.5 nm
Dmax 14.6 nm
VolumePorod 289 nm3

SASDE96 – ...dehydrogenase 12 from Zea mays Extrapolated to Infinite Dilution

Aldehyde dehydrogenase 12 experimental SAS data
ALLOSMOD model
Sample: ...dehydrogenase 12 tetramer, 242 kDa Zea mays protein
Buffer: 50 mM Tris-HCl, 50 mM NaCl, 0.5 mM TCEP, and 5% (v/v) glycerol, pH: 7.8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2016 Dec 6
...Dehydrogenase 12, the Last Enzyme of Proline Catabolism in Plants. J Mol Biol (2018)
Korasick DA, Končitíková R, Kopečná M, Hájková E, Vigouroux A, Moréra S, Becker DF, Šebela M, Tanner JJ, Kopečný D
RgGuinier 4.1 nm
Dmax 14.4 nm
VolumePorod 351 nm3

SASDQ48 – ...proline dehydrogenase domain of proline utilization A (SmPutADeltaAlpha2) 1.1 mg/mL

Minimal proline dehydrogenase domain of proline utilization A (design #2) experimental SAS data
OTHER model
Sample: ...proline dehydrogenase domain of proline utilization A (design #2) dimer, 87 kDa Sinorhizobium meliloti protein
Buffer: 25 mM HEPES pH 7.6, 150 mM NaCl, and 1mM TCEP, pH: 7.6
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2022 Apr 12
...Proline dehydrogenase domains for inhibitor discovery. Protein Eng Des Sel (2022)
Bogner AN, Ji J, Tanner JJ
RgGuinier 2.7 nm
Dmax 9.5 nm
VolumePorod 102 nm3

SASDQ58 – ...proline dehydrogenase domain of proline utilization A (SmPutADeltaAlpha2) 2.3 mg/mL

Minimal proline dehydrogenase domain of proline utilization A (design #2) experimental SAS data
OTHER model
Sample: ...proline dehydrogenase domain of proline utilization A (design #2) dimer, 87 kDa Sinorhizobium meliloti protein
Buffer: 25 mM HEPES pH 7.6, 150 mM NaCl, and 1mM TCEP, pH: 7.6
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2022 Apr 12
...Proline dehydrogenase domains for inhibitor discovery. Protein Eng Des Sel (2022)
Bogner AN, Ji J, Tanner JJ
RgGuinier 2.9 nm
Dmax 9.7 nm
VolumePorod 102 nm3

SASDQ68 – ...proline dehydrogenase domain of proline utilization A (SmPutADeltaAlpha2) 3.4 mg/mL

Minimal proline dehydrogenase domain of proline utilization A (design #2) experimental SAS data
OTHER model
Sample: ...proline dehydrogenase domain of proline utilization A (design #2) dimer, 87 kDa Sinorhizobium meliloti protein
Buffer: 25 mM HEPES pH 7.6, 150 mM NaCl, and 1mM TCEP, pH: 7.6
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2022 Apr 12
...Proline dehydrogenase domains for inhibitor discovery. Protein Eng Des Sel (2022)
Bogner AN, Ji J, Tanner JJ
RgGuinier 3.0 nm
Dmax 9.8 nm
VolumePorod 108 nm3