Search

 
Advanced search  

11 hits found for Soni

SASDM43 – RRM1-ZnF1 tandem domains of RNA-binding protein 5 (C191G mutant)

RNA-binding protein 5 (I107T, C191G) experimental SAS data
Sample: RNA-binding protein 5 (I107T, C191G) monomer, 14 kDa Homo sapiens protein
Buffer: 20 mM MES, 400 mM NaCl, 1 mM DTT, pH: 6.5
Experiment: SAXS data collected at BM29, ESRF on 2016 Sep 26
Structural basis for specific RNA recognition by the alternative splicing factor RBM5. Nat Commun 14(1):4233 (2023)
Soni K, Jagtap PKA, Martínez-Lumbreras S, Bonnal S, Geerlof A, Stehle R, Simon B, Valcárcel J, Sattler M
RgGuinier 1.7 nm
Dmax 5.6 nm
VolumePorod 28 nm3

SASDM53 – RRM1-ZnF1-RRM2 triple domains of RNA-binding protein 5 (C191G mutant)

RNA Binding Motif protein 5 (I107T, C191G) experimental SAS data
RNA Binding Motif protein 5 (I107T, C191G) Kratky plot
Sample: RNA Binding Motif protein 5 (I107T, C191G) monomer, 26 kDa Homo sapiens protein
Buffer: 20 mM MES, 400 mM NaCl, 1 mM DTT, pH: 6.5
Experiment: SAXS data collected at Rigaku BioSAXS-1000, SFB 1035, Technische Universität München on 2017 Feb 9
Structural basis for specific RNA recognition by the alternative splicing factor RBM5. Nat Commun 14(1):4233 (2023)
Soni K, Jagtap PKA, Martínez-Lumbreras S, Bonnal S, Geerlof A, Stehle R, Simon B, Valcárcel J, Sattler M
RgGuinier 2.3 nm
Dmax 7.8 nm
VolumePorod 36 nm3

SASDM63 – RRM1-ZnF1-RRM2 triple domains of RNA-binding protein 5 (C191G mutant) in complex with GGCU_12 RNA

RNA Binding Motif protein 5 (I107T, C191G)Caspase-2 derived RNA GGCU_12 experimental SAS data
OTHER model
Sample: RNA Binding Motif protein 5 (I107T, C191G) monomer, 26 kDa Homo sapiens protein
Caspase-2 derived RNA GGCU_12 monomer, 4 kDa RNA
Buffer: 20 mM MES, 100 mM NaCl, 1 mM DTT, pH: 6.5
Experiment: SAXS data collected at Rigaku BioSAXS-1000, SFB 1035, Technische Universität München on 2017 Mar 1
Structural basis for specific RNA recognition by the alternative splicing factor RBM5. Nat Commun 14(1):4233 (2023)
Soni K, Jagtap PKA, Martínez-Lumbreras S, Bonnal S, Geerlof A, Stehle R, Simon B, Valcárcel J, Sattler M
RgGuinier 2.2 nm
Dmax 7.5 nm
VolumePorod 42 nm3

SASDK24 – Signal recognition particle SRP9/14 heterodimer from Plasmodium falciparum

Signal recognition particle 9Signal recognition particle 14 experimental SAS data
DAMMIN model
Sample: Signal recognition particle 9 monomer, 12 kDa Plasmodium falciparum protein
Signal recognition particle 14 monomer, 12 kDa Plasmodium falciparum protein
Buffer: 20 mM HEPES pH 7.5, 150 mM NaCl, 10 mM MgCl2, 10 mM KCl, 1mM DTT, pH: 7.5
Experiment: SAXS data collected at BM29, ESRF on 2018 Feb 22
Structural analysis of the SRP Alu domain from Plasmodium falciparum reveals a non-canonical open conformation. Commun Biol 4(1):600 (2021)
Soni K, Kempf G, Manalastas-Cantos K, Hendricks A, Flemming D, Guizetti J, Simon B, Frischknecht F, Svergun DI, Wild K, Sinning I
RgGuinier 2.1 nm
Dmax 7.2 nm
VolumePorod 47 nm3

SASDK34 – Full length SRP Alu RNA from Plasmodium falciparum

Full-length SRP Alu RNA experimental SAS data
DAMMIN model
Sample: Full-length SRP Alu RNA monomer, 38 kDa Plasmodium falciparum RNA
Buffer: 20 mM HEPES pH 7.5, 150 mM NaCl, 10 mM MgCl2, 10 mM KCl, pH: 7.5
Experiment: SAXS data collected at BM29, ESRF on 2018 Jun 22
Structural analysis of the SRP Alu domain from Plasmodium falciparum reveals a non-canonical open conformation. Commun Biol 4(1):600 (2021)
Soni K, Kempf G, Manalastas-Cantos K, Hendricks A, Flemming D, Guizetti J, Simon B, Frischknecht F, Svergun DI, Wild K, Sinning I
RgGuinier 3.3 nm
Dmax 11.8 nm
VolumePorod 63 nm3

SASDK44 – The 5' domain of SRP Alu RNA from Plasmodium falciparum

SRP Alu RNA 5' domain experimental SAS data
DAMMIN model
Sample: SRP Alu RNA 5' domain monomer, 24 kDa Plasmodium falciparum RNA
Buffer: 20 mM HEPES pH 7.5, 150 mM NaCl, 10 mM MgCl2, 10 mM KCl, pH: 7.5
Experiment: SAXS data collected at BM29, ESRF on 2018 Jun 22
Structural analysis of the SRP Alu domain from Plasmodium falciparum reveals a non-canonical open conformation. Commun Biol 4(1):600 (2021)
Soni K, Kempf G, Manalastas-Cantos K, Hendricks A, Flemming D, Guizetti J, Simon B, Frischknecht F, Svergun DI, Wild K, Sinning I
RgGuinier 3.3 nm
Dmax 11.5 nm
VolumePorod 38 nm3

SASDK54 – Signal recognition particle SRP9/14 heterodimer in complex with full length SRP Alu RNA from Plasmodium falciparum

Signal recognition particle 9Signal recognition particle 14Full-length SRP Alu RNA experimental SAS data
MONSA model
Sample: Signal recognition particle 9 monomer, 12 kDa Plasmodium falciparum protein
Signal recognition particle 14 monomer, 12 kDa Plasmodium falciparum protein
Full-length SRP Alu RNA monomer, 38 kDa Plasmodium falciparum RNA
Buffer: 20 mM HEPES pH 7.5, 150 mM NaCl, 10 mM MgCl2, 10 mM KCl, 1mM DTT, pH: 7.5
Experiment: SAXS data collected at BM29, ESRF on 2018 Jun 22
Structural analysis of the SRP Alu domain from Plasmodium falciparum reveals a non-canonical open conformation. Commun Biol 4(1):600 (2021)
Soni K, Kempf G, Manalastas-Cantos K, Hendricks A, Flemming D, Guizetti J, Simon B, Frischknecht F, Svergun DI, Wild K, Sinning I
RgGuinier 3.5 nm
Dmax 12.0 nm
VolumePorod 120 nm3

SASDK64 – Signal recognition particle SRP9/14 heterodimer in complex with the 5' domain of SRP Alu RNA from Plasmodium falciparum

Signal recognition particle 9Signal recognition particle 14SRP Alu RNA 5' domain experimental SAS data
MONSA model
Sample: Signal recognition particle 9 monomer, 12 kDa Plasmodium falciparum protein
Signal recognition particle 14 monomer, 12 kDa Plasmodium falciparum protein
SRP Alu RNA 5' domain monomer, 24 kDa Plasmodium falciparum RNA
Buffer: 20 mM HEPES pH 7.5, 150 mM NaCl, 10 mM MgCl2, 10 mM KCl, 1mM DTT, pH: 7.5
Experiment: SAXS data collected at BM29, ESRF on 2018 Jun 22
Structural analysis of the SRP Alu domain from Plasmodium falciparum reveals a non-canonical open conformation. Commun Biol 4(1):600 (2021)
Soni K, Kempf G, Manalastas-Cantos K, Hendricks A, Flemming D, Guizetti J, Simon B, Frischknecht F, Svergun DI, Wild K, Sinning I
RgGuinier 3.2 nm
Dmax 11.9 nm
VolumePorod 77 nm3

SASDHJ8 – ACT domain of the Mycobacterium tuberculosis Rel protein

ACT domain of Rel protein (Bifunctional (p)ppGpp synthase/hydrolase RelA) experimental SAS data
ACT domain of Rel protein (Bifunctional (p)ppGpp synthase/hydrolase RelA) Kratky plot
Sample: ACT domain of Rel protein (Bifunctional (p)ppGpp synthase/hydrolase RelA) dimer, 20 kDa Mycobacterium tuberculosis protein
Buffer: 50 mM Tris-HCl, 350 mM NaCl, 5% glycerol, 1 mM DTT, pH: 8.5
Experiment: SAXS data collected at Bruker Nanostar, Nanyang Technological University on 2018 Jun 7
Atomic structure of, and valine binding to the regulatory ACT domain of the Mycobacterium tuberculosis Rel protein. FEBS J (2020)
Shin J, Singal B, Manimekalai MSS, Chen MW, Ragunathan P, Grüber G
RgGuinier 1.9 nm
Dmax 6.1 nm
VolumePorod 29 nm3

SASDKE6 – Poly(A) polymerase pla1 bound to the NURS complex subunit red1

NURS complex subunit red1Poly(A) polymerase pla1 experimental SAS data
CORAL model
Sample: NURS complex subunit red1 monomer, 8 kDa Schizosaccharomyces pombe (strain … protein
Poly(A) polymerase pla1 monomer, 65 kDa Schizosaccharomyces pombe (strain … protein
Buffer: 20 mM HEPES, pH 7.5, 150 mM NaCl, 1mM DTT, pH: 7.5
Experiment: SAXS data collected at EMBL P12, PETRA III on 2019 Nov 12
Mechanistic insights into RNA surveillance by the canonical poly(A) polymerase Pla1 of the MTREC complex. Nat Commun 14(1):772 (2023)
Soni K, Sivadas A, Horvath A, Dobrev N, Hayashi R, Kiss L, Simon B, Wild K, Sinning I, Fischer T
RgGuinier 3.3 nm
Dmax 10.7 nm
VolumePorod 138 nm3

SASDKD6 – NURS complex subunit red1

NURS complex subunit red1 experimental SAS data
NURS complex subunit red1 Kratky plot
Sample: NURS complex subunit red1 monomer, 8 kDa Schizosaccharomyces pombe (strain … protein
Buffer: 20 mM HEPES, pH 7.5, 150 mM NaCl, 1mM DTT, pH: 7.5
Experiment: SAXS data collected at EMBL P12, PETRA III on 2019 Nov 12
Mechanistic insights into RNA surveillance by the canonical poly(A) polymerase Pla1 of the MTREC complex. Nat Commun 14(1):772 (2023)
Soni K, Sivadas A, Horvath A, Dobrev N, Hayashi R, Kiss L, Simon B, Wild K, Sinning I, Fischer T
RgGuinier 2.5 nm
Dmax 8.7 nm
VolumePorod 12 nm3