Search

 
Advanced search  

65 hits found for Missoury

SASDCH2 – Aldehyde dehydrogenase 7A1

Aldehyde dehydrogenase 7A1 (Alpha-aminoadipic semialdehyde dehydrogenase) experimental SAS data
NONE model
Sample: Aldehyde dehydrogenase 7A1 (Alpha-aminoadipic semialdehyde dehydrogenase) tetramer, 222 kDa Homo sapiens protein
Buffer: 50 mM Tris, 5% glycerol, 0.5 mM tris(3-hydroxypropyl)phosphine, 50 mM NaCl, pH: 7.8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2014 Mar 9
Structural Basis of Substrate Recognition by Aldehyde Dehydrogenase 7A1. Biochemistry 54(35):5513-22 (2015)
Luo M, Tanner JJ
RgGuinier 3.8 nm
Dmax 11.5 nm
VolumePorod 270 nm3

SASDDJ2 – Calcium-bound polcalcin Phl p 7

polcalcin Phl p 7 experimental SAS data
MES-FOXS model
Sample: polcalcin Phl p 7 monomer, 9 kDa Phleum pratense protein
Buffer: 0.15M NaCl, 0.025M Hepes, pH 7.4, 100 uM Ca2+, pH: 7.4
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2011 Dec 8
Solution structures of polcalcin Phl p 7 in three ligation states: Apo-, hemi-Mg2+-bound, and fully Ca2+-bound. Proteins 81(2):300-15 (2013)
Henzl MT, Sirianni AG, Wycoff WG, Tan A, Tanner JJ
RgGuinier 1.3 nm
Dmax 3.6 nm
VolumePorod 14 nm3

SASDDK2 – Aspergillus fumigatus UDP galactopyranose mutase

Aspergillus fumigatus UDP galactopyranose mutase experimental SAS data
MES-FOXS model
Sample: Aspergillus fumigatus UDP galactopyranose mutase tetramer, 228 kDa protein
Buffer: 20 mM HEPES, 45 mM NaCl, 0.5 mM Tris(hydroxypropyl)phosphine, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2010 Apr 19
Crystal structures and small-angle x-ray scattering analysis of UDP-galactopyranose mutase from the pathogenic fungus Aspergillus fumigatus. J Biol Chem 287(12):9041-51 (2012)
Dhatwalia R, Singh H, Oppenheimer M, Karr DB, Nix JC, Sobrado P, Tanner JJ
RgGuinier 4.7 nm
Dmax 14.7 nm
VolumePorod 308 nm3

SASDDL2 – Sinorhizobium meliloti Proline Utilization A (PutA) lowest concentration, 1.00 mg/ml

Sinorhizobium meliloti (SmPutA) experimental SAS data
MES-FOXS model
Sample: Sinorhizobium meliloti (SmPutA) monomer, 132 kDa Sinorhizobium meliloti protein
Buffer: 50 mM Tris, 1% (v/v) glycerol, 0.5 mM THP, and 50 mM NaCl, pH: 7.8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2014 Mar 27
Structures of Proline Utilization A (PutA) Reveal the Fold and Functions of the Aldehyde Dehydrogenase Superfamily Domain of Unknown Function. J Biol Chem 291(46):24065-24075 (2016)
Luo M, Gamage TT, Arentson BW, Schlasner KN, Becker DF, Tanner JJ
RgGuinier 3.4 nm
Dmax 11.0 nm
VolumePorod 171 nm3

SASDDM2 – Sinorhizobium meliloti Proline Utilization A (PutA) at 2.00 mg/ml

Sinorhizobium meliloti (SmPutA) experimental SAS data
MES-FOXS model
Sample: Sinorhizobium meliloti (SmPutA) monomer, 132 kDa Sinorhizobium meliloti protein
Buffer: 50 mM Tris, 1% (v/v) glycerol, 0.5 mM THP, and 50 mM NaCl, pH: 7.8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2014 Mar 27
Structures of Proline Utilization A (PutA) Reveal the Fold and Functions of the Aldehyde Dehydrogenase Superfamily Domain of Unknown Function. J Biol Chem 291(46):24065-24075 (2016)
Luo M, Gamage TT, Arentson BW, Schlasner KN, Becker DF, Tanner JJ
RgGuinier 3.8 nm
Dmax 11.9 nm
VolumePorod 225 nm3

SASDDN2 – Sinorhizobium meliloti Proline Utilization A (PutA) at 3.00 mg/ml

Sinorhizobium meliloti (SmPutA) experimental SAS data
MES-FOXS model
Sample: Sinorhizobium meliloti (SmPutA) monomer, 132 kDa Sinorhizobium meliloti protein
Buffer: 50 mM Tris, 1% (v/v) glycerol, 0.5 mM THP, and 50 mM NaCl, pH: 7.8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2014 Mar 27
Structures of Proline Utilization A (PutA) Reveal the Fold and Functions of the Aldehyde Dehydrogenase Superfamily Domain of Unknown Function. J Biol Chem 291(46):24065-24075 (2016)
Luo M, Gamage TT, Arentson BW, Schlasner KN, Becker DF, Tanner JJ
RgGuinier 3.8 nm
Dmax 11.8 nm
VolumePorod 248 nm3

SASDDP2 – Sinorhizobium meliloti Proline Utilization A (PutA) at high concentration, 4.00 mg/ml

Sinorhizobium meliloti (SmPutA) experimental SAS data
MES-FOXS model
Sample: Sinorhizobium meliloti (SmPutA) monomer, 132 kDa Sinorhizobium meliloti protein
Buffer: 50 mM Tris, 1% (v/v) glycerol, 0.5 mM THP, and 50 mM NaCl, pH: 7.8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2014 Mar 27
Structures of Proline Utilization A (PutA) Reveal the Fold and Functions of the Aldehyde Dehydrogenase Superfamily Domain of Unknown Function. J Biol Chem 291(46):24065-24075 (2016)
Luo M, Gamage TT, Arentson BW, Schlasner KN, Becker DF, Tanner JJ
RgGuinier 3.9 nm
Dmax 11.9 nm
VolumePorod 277 nm3

SASDCP3 – Proline utilization A from Bdellovibrio bacteriovorus

Bifunctional protein PutA experimental SAS data
DAMMIF model
Sample: Bifunctional protein PutA dimer, 219 kDa Bdellovibrio bacteriovorus protein
Buffer: 50 mM Tris, 125 mM NaCl, 1 mM EDTA, and 1 mM tris(3-hydroxypropyl)phosphine (THP) at pH 7.5,, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2012 Jun 8
Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure. FEBS J 284(18):3029-3049 (2017)
Korasick DA, Singh H, Pemberton TA, Luo M, Dhatwalia R, Tanner JJ
RgGuinier 4.5 nm
Dmax 14.0 nm
VolumePorod 287 nm3

SASDDP3 – N-propargyl glycine-Inactivated Proline utilization A from Bradyrhizobium diazoefficiens (formerly Bradyrhizobium japonicum) collected by SEC-SAXS

Bifunctional protein PutA experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Bifunctional protein PutA dimer, 215 kDa Bradyrhizobium diazoefficiens protein
Buffer: 50 mM Tris, 50 mM NaCl, 0.5 mM TCEP, 5% (v/v) glycerol, pH: 7.8
Experiment: SAXS data collected at BioCAT 18ID, Advanced Photon Source (APS), Argonne National Laboratory on 2017 Jul 16
Redox Modulation of Oligomeric State in Proline Utilization A. Biophys J 114(12):2833-2843 (2018)
Korasick DA, Campbell AC, Christgen SL, Chakravarthy S, White TA, Becker DF, Tanner JJ
RgGuinier 4.6 nm
Dmax 14.4 nm
VolumePorod 324 nm3

SASDCQ3 – Proline utilization A from Desulfovibrio vulgaris 1.5 mg/mL

Bifunctional protein PutA experimental SAS data
Bifunctional protein PutA Kratky plot
Sample: Bifunctional protein PutA dimer, 229 kDa Desulfovibrio vulgaris protein
Buffer: 50 mM Tris-HCl, 50 mM NaCl, 0.5 mM EDTA, and 0.5 mM THP at pH 7.5., pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2012 Jun 8
Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure. FEBS J 284(18):3029-3049 (2017)
Korasick DA, Singh H, Pemberton TA, Luo M, Dhatwalia R, Tanner JJ
RgGuinier 4.4 nm
Dmax 16.0 nm
VolumePorod 293 nm3

SASDDQ3 – Proline utilization A from Bradyrhizobium diazoefficiens (formerly Bradyrhizobium japonicum) collected by SEC-SAXS

Bifunctional protein PutA experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Bifunctional protein PutA tetramer, 430 kDa Bradyrhizobium diazoefficiens protein
Buffer: 50 mM Tris, 50 mM NaCl, 0.5 mM TCEP, 5% (v/v) glycerol, pH: 7.8
Experiment: SAXS data collected at BioCAT 18ID, Advanced Photon Source (APS), Argonne National Laboratory on 2017 Jul 16
Redox Modulation of Oligomeric State in Proline Utilization A. Biophys J 114(12):2833-2843 (2018)
Korasick DA, Campbell AC, Christgen SL, Chakravarthy S, White TA, Becker DF, Tanner JJ
RgGuinier 5.2 nm
Dmax 14.2 nm
VolumePorod 582 nm3

SASDCR3 – Proline utilization A from Legionella pneumophila 3 mg/mL

Bifunctional protein PutA experimental SAS data
Bifunctional protein PutA Kratky plot
Sample: Bifunctional protein PutA dimer, 238 kDa Legionella pneumophila subsp. … protein
Buffer: 50 mM Tris-HCl, 50 mM NaCl, 0.5 mM EDTA, and 0.5 mM THP at pH 7.5., pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2010 Apr 20
Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure. FEBS J 284(18):3029-3049 (2017)
Korasick DA, Singh H, Pemberton TA, Luo M, Dhatwalia R, Tanner JJ
RgGuinier 4.6 nm
Dmax 16.0 nm
VolumePorod 291 nm3

SASDCS3 – Proline utilization A from Bradyrhizobium diazoefficiens (formerly Bradyrhizobium japonicum) 2.3 mg/mL

Proline dehydrogenase experimental SAS data
Proline dehydrogenase Kratky plot
Sample: Proline dehydrogenase tetramer, 430 kDa Bradyrhizobium diazoefficiens protein
Buffer: 50 mM Tris (pH 7.8), 50 mM NaCl, 0.5 mM Tris(2-carboxyethyl)phosphine, and 5% (v/v) glycerol, pH: 7.8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2016 Dec 16
Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure. FEBS J 284(18):3029-3049 (2017)
Korasick DA, Singh H, Pemberton TA, Luo M, Dhatwalia R, Tanner JJ
RgGuinier 5.3 nm
Dmax 14.1 nm
VolumePorod 541 nm3

SASDCT3 – Proline utilization A from Bradyrhizobium diazoefficiens (formerly Bradyrhizobium japonicum) 4.7 mg/mL

Proline dehydrogenase experimental SAS data
Proline dehydrogenase Kratky plot
Sample: Proline dehydrogenase tetramer, 430 kDa Bradyrhizobium diazoefficiens protein
Buffer: 50 mM Tris (pH 7.8), 50 mM NaCl, 0.5 mM Tris(2-carboxyethyl)phosphine, and 5% (v/v) glycerol, pH: 7.8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2016 Dec 12
Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure. FEBS J 284(18):3029-3049 (2017)
Korasick DA, Singh H, Pemberton TA, Luo M, Dhatwalia R, Tanner JJ
RgGuinier 5.2 nm
Dmax 14.6 nm
VolumePorod 553 nm3

SASDCU3 – Proline utilization A from Bradyrhizobium diazoefficiens (formerly Bradyrhizobium japonicum) 7.0 mg/mL

Proline dehydrogenase experimental SAS data
DAMMIF model
Sample: Proline dehydrogenase tetramer, 430 kDa Bradyrhizobium diazoefficiens protein
Buffer: 50 mM Tris (pH 7.8), 50 mM NaCl, 0.5 mM Tris(2-carboxyethyl)phosphine, and 5% (v/v) glycerol, pH: 7.8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2016 Dec 12
Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure. FEBS J 284(18):3029-3049 (2017)
Korasick DA, Singh H, Pemberton TA, Luo M, Dhatwalia R, Tanner JJ
RgGuinier 5.2 nm
Dmax 13.7 nm
VolumePorod 560 nm3

SASDCV3 – Proline utilization A from Legionella pneumophila 5 mg/mL

Bifunctional protein PutA experimental SAS data
Bifunctional protein PutA Kratky plot
Sample: Bifunctional protein PutA dimer, 238 kDa Legionella pneumophila subsp. … protein
Buffer: 50 mM Tris-HCl, 50 mM NaCl, 0.5 mM EDTA, and 0.5 mM THP at pH 7.5., pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2010 Apr 20
Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure. FEBS J 284(18):3029-3049 (2017)
Korasick DA, Singh H, Pemberton TA, Luo M, Dhatwalia R, Tanner JJ
RgGuinier 4.6 nm
Dmax 15.3 nm
VolumePorod 297 nm3

SASDCW3 – Proline utilization A from Legionella pneumophila 8 mg/mL

Bifunctional protein PutA experimental SAS data
DAMMIF model
Sample: Bifunctional protein PutA dimer, 238 kDa Legionella pneumophila subsp. … protein
Buffer: 50 mM Tris-HCl, 50 mM NaCl, 0.5 mM EDTA, and 0.5 mM THP at pH 7.5., pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2010 Apr 20
Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure. FEBS J 284(18):3029-3049 (2017)
Korasick DA, Singh H, Pemberton TA, Luo M, Dhatwalia R, Tanner JJ
RgGuinier 4.6 nm
Dmax 15.5 nm
VolumePorod 295 nm3

SASDCX3 – Proline utilization A from Desulfovibrio vulgaris 3.0 mg/mL

Bifunctional protein PutA experimental SAS data
DAMMIF model
Sample: Bifunctional protein PutA dimer, 229 kDa Desulfovibrio vulgaris protein
Buffer: 50 mM Tris-HCl, 50 mM NaCl, 0.5 mM EDTA, and 0.5 mM THP at pH 7.5., pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2012 Jun 8
Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure. FEBS J 284(18):3029-3049 (2017)
Korasick DA, Singh H, Pemberton TA, Luo M, Dhatwalia R, Tanner JJ
RgGuinier 4.4 nm
Dmax 16.0 nm
VolumePorod 295 nm3

SASDCY3 – Proline utilization A from Desulfovibrio vulgaris 4.5 mg/mL

Bifunctional protein PutA experimental SAS data
Bifunctional protein PutA Kratky plot
Sample: Bifunctional protein PutA dimer, 229 kDa Desulfovibrio vulgaris protein
Buffer: 50 mM Tris-HCl, 50 mM NaCl, 0.5 mM EDTA, and 0.5 mM THP at pH 7.5., pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2012 Jun 8
Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure. FEBS J 284(18):3029-3049 (2017)
Korasick DA, Singh H, Pemberton TA, Luo M, Dhatwalia R, Tanner JJ
RgGuinier 4.4 nm
Dmax 16.0 nm
VolumePorod 294 nm3

SASDCZ3 – Proline utilization A from Bradyrhizobium diazoefficiens (formerly Bradyrhizobium japonicum) R51E mutant 2.3 mg/mL

Proline dehydrogenase experimental SAS data
Proline dehydrogenase Kratky plot
Sample: Proline dehydrogenase dimer, 215 kDa Bradyrhizobium diazoefficiens protein
Buffer: 50 mM Tris (pH 7.8), 50 mM NaCl, 0.5 mM Tris(2-carboxyethyl)phosphine, and 5% (v/v) glycerol, pH: 7.8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2016 Dec 16
Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure. FEBS J 284(18):3029-3049 (2017)
Korasick DA, Singh H, Pemberton TA, Luo M, Dhatwalia R, Tanner JJ
RgGuinier 4.5 nm
Dmax 14.5 nm
VolumePorod 281 nm3

SASDC24 – Proline utilization A from Bradyrhizobium diazoefficiens (formerly Bradyrhizobium japonicum) R51E mutant 4.7 mg/mL

Proline dehydrogenase experimental SAS data
Proline dehydrogenase Kratky plot
Sample: Proline dehydrogenase dimer, 215 kDa Bradyrhizobium diazoefficiens protein
Buffer: 50 mM Tris (pH 7.8), 50 mM NaCl, 0.5 mM Tris(2-carboxyethyl)phosphine, and 5% (v/v) glycerol, pH: 7.8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2016 Dec 16
Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure. FEBS J 284(18):3029-3049 (2017)
Korasick DA, Singh H, Pemberton TA, Luo M, Dhatwalia R, Tanner JJ
RgGuinier 4.5 nm
Dmax 13.9 nm
VolumePorod 283 nm3

SASDC34 – Proline utilization A from Bradyrhizobium diazoefficiens (formerly Bradyrhizobium japonicum) R51E mutant 7.0 mg/mL

Proline dehydrogenase experimental SAS data
DAMMIF model
Sample: Proline dehydrogenase dimer, 215 kDa Bradyrhizobium diazoefficiens protein
Buffer: 50 mM Tris (pH 7.8), 50 mM NaCl, 0.5 mM Tris(2-carboxyethyl)phosphine, and 5% (v/v) glycerol, pH: 7.8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2016 Dec 16
Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure. FEBS J 284(18):3029-3049 (2017)
Korasick DA, Singh H, Pemberton TA, Luo M, Dhatwalia R, Tanner JJ
RgGuinier 4.5 nm
Dmax 14.6 nm
VolumePorod 289 nm3

SASDGH4 – Human alpha-aminoadipic semialdehyde dehydrogenase (ALDH)7A1 at 1.2 mg/mL

Alpha-aminoadipic semialdehyde dehydrogenase experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Alpha-aminoadipic semialdehyde dehydrogenase tetramer, 222 kDa Homo sapiens protein
Buffer: 50 mM HEPES, 100 mM NaCl, 1 mM DTT, 10 mM NAD, 2% (v/v) glycerol, pH: 8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2019 May 1
Structural Analysis of Pathogenic Mutations Targeting Glu427 of ALDH7A1, the Hot Spot Residue of Pyridoxine-Dependent Epilepsy. J Inherit Metab Dis (2019)
Laciak AR, Korasick DA, Gates KS, Tanner JJ
RgGuinier 3.8 nm
Dmax 11.5 nm
VolumePorod 350 nm3

SASDGJ4 – Human alpha-aminoadipic semialdehyde dehydrogenase (ALDH)7A1 at 2.3 mg/mL

Alpha-aminoadipic semialdehyde dehydrogenase experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Alpha-aminoadipic semialdehyde dehydrogenase tetramer, 222 kDa Homo sapiens protein
Buffer: 50 mM HEPES, 100 mM NaCl, 1 mM DTT, 10 mM NAD, 2% (v/v) glycerol, pH: 8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2019 May 1
Structural Analysis of Pathogenic Mutations Targeting Glu427 of ALDH7A1, the Hot Spot Residue of Pyridoxine-Dependent Epilepsy. J Inherit Metab Dis (2019)
Laciak AR, Korasick DA, Gates KS, Tanner JJ
RgGuinier 3.8 nm
Dmax 10.7 nm
VolumePorod 326 nm3

SASDGK4 – Human alpha-aminoadipic semialdehyde dehydrogenase (ALDH)7A1 at 4.7 mg/mL

Alpha-aminoadipic semialdehyde dehydrogenase experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Alpha-aminoadipic semialdehyde dehydrogenase tetramer, 222 kDa Homo sapiens protein
Buffer: 50 mM HEPES, 100 mM NaCl, 1 mM DTT, 10 mM NAD, 2% (v/v) glycerol, pH: 8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2019 May 1
Structural Analysis of Pathogenic Mutations Targeting Glu427 of ALDH7A1, the Hot Spot Residue of Pyridoxine-Dependent Epilepsy. J Inherit Metab Dis (2019)
Laciak AR, Korasick DA, Gates KS, Tanner JJ
RgGuinier 3.8 nm
Dmax 10.7 nm
VolumePorod 315 nm3

SASDGL4 – Human alpha-aminoadipic semialdehyde dehydrogenase (ALDH)7A1 E399Q at 1.1 mg/mL

Alpha-aminoadipic semialdehyde dehydrogenase E399Q experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Alpha-aminoadipic semialdehyde dehydrogenase E399Q , 56 kDa Homo sapiens protein
Buffer: 50 mM HEPES, 100 mM NaCl, 1 mM DTT, 10 mM NAD, 2% (v/v) glycerol, pH: 8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2019 May 1
Structural Analysis of Pathogenic Mutations Targeting Glu427 of ALDH7A1, the Hot Spot Residue of Pyridoxine-Dependent Epilepsy. J Inherit Metab Dis (2019)
Laciak AR, Korasick DA, Gates KS, Tanner JJ
RgGuinier 3.7 nm
Dmax 10.3 nm
VolumePorod 237 nm3

SASDGM4 – Human alpha-aminoadipic semialdehyde dehydrogenase (ALDH)7A1 E399Q at 2.1 mg/mL

Alpha-aminoadipic semialdehyde dehydrogenase E399Q experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Alpha-aminoadipic semialdehyde dehydrogenase E399Q , 56 kDa Homo sapiens protein
Buffer: 50 mM HEPES, 100 mM NaCl, 1 mM DTT, 10 mM NAD, 2% (v/v) glycerol, pH: 8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2019 May 1
Structural Analysis of Pathogenic Mutations Targeting Glu427 of ALDH7A1, the Hot Spot Residue of Pyridoxine-Dependent Epilepsy. J Inherit Metab Dis (2019)
Laciak AR, Korasick DA, Gates KS, Tanner JJ
RgGuinier 3.8 nm
Dmax 10.8 nm
VolumePorod 238 nm3

SASDGN4 – Human alpha-aminoadipic semialdehyde dehydrogenase (ALDH)7A1 E399Q at 4.3 mg/mL

Alpha-aminoadipic semialdehyde dehydrogenase E399Q experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Alpha-aminoadipic semialdehyde dehydrogenase E399Q , 56 kDa Homo sapiens protein
Buffer: 50 mM HEPES, 100 mM NaCl, 1 mM DTT, 10 mM NAD, 2% (v/v) glycerol, pH: 8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2019 May 1
Structural Analysis of Pathogenic Mutations Targeting Glu427 of ALDH7A1, the Hot Spot Residue of Pyridoxine-Dependent Epilepsy. J Inherit Metab Dis (2019)
Laciak AR, Korasick DA, Gates KS, Tanner JJ
RgGuinier 3.8 nm
Dmax 10.6 nm
VolumePorod 255 nm3

SASDGP4 – Human alpha-aminoadipic semialdehyde dehydrogenase (ALDH)7A1 E399D at 1.4 mg/mL

Alpha-aminoadipic semialdehyde dehydrogenase experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Alpha-aminoadipic semialdehyde dehydrogenase , 56 kDa Homo sapiens protein
Buffer: 50 mM HEPES, 100 mM NaCl, 1 mM DTT, 10 mM NAD, 2% (v/v) glycerol, pH: 8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2019 May 1
Structural Analysis of Pathogenic Mutations Targeting Glu427 of ALDH7A1, the Hot Spot Residue of Pyridoxine-Dependent Epilepsy. J Inherit Metab Dis (2019)
Laciak AR, Korasick DA, Gates KS, Tanner JJ
RgGuinier 3.7 nm
Dmax 11.3 nm
VolumePorod 256 nm3

SASDGQ4 – Human alpha-aminoadipic semialdehyde dehydrogenase (ALDH)7A1 E399D at 2.9 mg/mL

Alpha-aminoadipic semialdehyde dehydrogenase experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Alpha-aminoadipic semialdehyde dehydrogenase , 56 kDa Homo sapiens protein
Buffer: 50 mM HEPES, 100 mM NaCl, 1 mM DTT, 10 mM NAD, 2% (v/v) glycerol, pH: 8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2019 May 1
Structural Analysis of Pathogenic Mutations Targeting Glu427 of ALDH7A1, the Hot Spot Residue of Pyridoxine-Dependent Epilepsy. J Inherit Metab Dis (2019)
Laciak AR, Korasick DA, Gates KS, Tanner JJ
RgGuinier 3.8 nm
Dmax 11.4 nm
VolumePorod 260 nm3

SASDGR4 – Human alpha-aminoadipic semialdehyde dehydrogenase (ALDH)7A1 E399D at 5.7 mg/mL

Alpha-aminoadipic semialdehyde dehydrogenase E399D experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Alpha-aminoadipic semialdehyde dehydrogenase E399D , 56 kDa Homo sapiens protein
Buffer: 50 mM HEPES, 100 mM NaCl, 1 mM DTT, 10 mM NAD, 2% (v/v) glycerol, pH: 8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2019 May 1
Structural Analysis of Pathogenic Mutations Targeting Glu427 of ALDH7A1, the Hot Spot Residue of Pyridoxine-Dependent Epilepsy. J Inherit Metab Dis (2019)
Laciak AR, Korasick DA, Gates KS, Tanner JJ
RgGuinier 3.9 nm
Dmax 10.6 nm
VolumePorod 272 nm3

SASDGS4 – Human alpha-aminoadipic semialdehyde dehydrogenase (ALDH)7A1 E399G at 1.6 mg/mL

Alpha-aminoadipic semialdehyde dehydrogenase E399G experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Alpha-aminoadipic semialdehyde dehydrogenase E399G , 55 kDa Homo sapiens protein
Buffer: 50 mM HEPES, 100 mM NaCl, 1 mM DTT, 10 mM NAD, 2% (v/v) glycerol, pH: 8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2019 May 1
Structural Analysis of Pathogenic Mutations Targeting Glu427 of ALDH7A1, the Hot Spot Residue of Pyridoxine-Dependent Epilepsy. J Inherit Metab Dis (2019)
Laciak AR, Korasick DA, Gates KS, Tanner JJ
RgGuinier 3.8 nm
Dmax 11.3 nm
VolumePorod 290 nm3

SASDGT4 – Human alpha-aminoadipic semialdehyde dehydrogenase (ALDH)7A1 E399G at 3.2 mg/mL

Alpha-aminoadipic semialdehyde dehydrogenase E399G experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Alpha-aminoadipic semialdehyde dehydrogenase E399G , 55 kDa Homo sapiens protein
Buffer: 50 mM HEPES, 100 mM NaCl, 1 mM DTT, 10 mM NAD, 2% (v/v) glycerol, pH: 8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2019 May 1
Structural Analysis of Pathogenic Mutations Targeting Glu427 of ALDH7A1, the Hot Spot Residue of Pyridoxine-Dependent Epilepsy. J Inherit Metab Dis (2019)
Laciak AR, Korasick DA, Gates KS, Tanner JJ
RgGuinier 3.7 nm
Dmax 10.6 nm
VolumePorod 250 nm3

SASDGU4 – Human alpha-aminoadipic semialdehyde dehydrogenase (ALDH)7A1 E399G at 6.5 mg/mL

Alpha-aminoadipic semialdehyde dehydrogenase E399G experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Alpha-aminoadipic semialdehyde dehydrogenase E399G , 55 kDa Homo sapiens protein
Buffer: 50 mM HEPES, 100 mM NaCl, 1 mM DTT, 10 mM NAD, 2% (v/v) glycerol, pH: 8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2019 May 1
Structural Analysis of Pathogenic Mutations Targeting Glu427 of ALDH7A1, the Hot Spot Residue of Pyridoxine-Dependent Epilepsy. J Inherit Metab Dis (2019)
Laciak AR, Korasick DA, Gates KS, Tanner JJ
RgGuinier 3.8 nm
Dmax 10.0 nm
VolumePorod 270 nm3

SASDHV5 – Human 4-trimethylaminobutyraldehyde dehydrogenase (ALDH9A1) at 1.25 mg/mL

4-trimethylaminobutyraldehyde dehydrogenase experimental SAS data
OTHER model
Sample: 4-trimethylaminobutyraldehyde dehydrogenase tetramer, 215 kDa Homo sapiens protein
Buffer: 50 mM HEPES, 600 mM NaCl, 2% (v/v) glycerol, 1 mM DTT, 1 mM NAD+, pH: 8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2019 May 28
Inhibition, crystal structures, and in-solution oligomeric structure of aldehyde dehydrogenase 9A1. Arch Biochem Biophys :108477 (2020)
Wyatt JW, Korasick DA, Qureshi IA, Campbell AC, Gates KS, Tanner JJ
RgGuinier 3.8 nm
Dmax 10.9 nm
VolumePorod 252 nm3

SASDHW5 – Human 4-trimethylaminobutyraldehyde dehydrogenase (ALDH9A1) at 2.5 mg/mL

4-trimethylaminobutyraldehyde dehydrogenase experimental SAS data
OTHER model
Sample: 4-trimethylaminobutyraldehyde dehydrogenase tetramer, 215 kDa Homo sapiens protein
Buffer: 50 mM HEPES, 600 mM NaCl, 2% (v/v) glycerol, 1 mM DTT, 1 mM NAD+, pH: 8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2019 May 28
Inhibition, crystal structures, and in-solution oligomeric structure of aldehyde dehydrogenase 9A1. Arch Biochem Biophys :108477 (2020)
Wyatt JW, Korasick DA, Qureshi IA, Campbell AC, Gates KS, Tanner JJ
RgGuinier 3.8 nm
Dmax 10.8 nm
VolumePorod 240 nm3

SASDHX5 – Human 4-trimethylaminobutyraldehyde dehydrogenase (ALDH9A1) at 5 mg/mL

4-trimethylaminobutyraldehyde dehydrogenase experimental SAS data
OTHER model
Sample: 4-trimethylaminobutyraldehyde dehydrogenase tetramer, 215 kDa Homo sapiens protein
Buffer: 50 mM HEPES, 600 mM NaCl, 2% (v/v) glycerol, 1 mM DTT, 1 mM NAD+, pH: 8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2019 May 28
Inhibition, crystal structures, and in-solution oligomeric structure of aldehyde dehydrogenase 9A1. Arch Biochem Biophys :108477 (2020)
Wyatt JW, Korasick DA, Qureshi IA, Campbell AC, Gates KS, Tanner JJ
RgGuinier 3.8 nm
Dmax 10.5 nm
VolumePorod 240 nm3

SASDE96 – Aldehyde dehydrogenase 12 from Zea mays Extrapolated to Infinite Dilution

Aldehyde dehydrogenase 12 experimental SAS data
ALLOSMOD model
Sample: Aldehyde dehydrogenase 12 tetramer, 242 kDa Zea mays protein
Buffer: 50 mM Tris-HCl, 50 mM NaCl, 0.5 mM TCEP, and 5% (v/v) glycerol, pH: 7.8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2016 Dec 6
Structural and Biochemical Characterization of Aldehyde Dehydrogenase 12, the Last Enzyme of Proline Catabolism in Plants. J Mol Biol (2018)
Korasick DA, Končitíková R, Kopečná M, Hájková E, Vigouroux A, Moréra S, Becker DF, Šebela M, Tanner JJ, Kopečný D
RgGuinier 4.1 nm
Dmax 14.4 nm
VolumePorod 351 nm3

SASDSX6 – Aquifex aeolicus domain of unknown function 507 at 1 mg/mL

DUF507 family protein experimental SAS data
CUSTOM IN-HOUSE model
Sample: DUF507 family protein monomer, 22 kDa Aquifex aeolicus (strain … protein
Buffer: 20 mM Hepes pH 7.2, 400 mM NaCl, pH: 7.2
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2021 Dec 7
Crystal structure of domain of unknown function 507 (DUF507) reveals a new protein fold. Sci Rep 13(1):13496 (2023)
McKay CE, Cheng J, Tanner JJ
RgGuinier 2.3 nm
Dmax 9.0 nm
VolumePorod 39 nm3

SASDB27 – Chimeric EcRHH-RcPutA: The E.coli Proline utilization A RHH domain fused to R.capsulatus PutA

Proline utilization A experimental SAS data
Proline utilization A Kratky plot
Sample: Proline utilization A dimer, 251 kDa Escherchia coli, Rhodobacter … protein
Buffer: 50 mM Tris, 200 mM NaCl, 0.5 mM Tris(3-hydroxypropyl)phosphine, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2012 Oct 16
Engineering a trifunctional proline utilization A chimaera by fusing a DNA-binding domain to a bifunctional PutA. Biosci Rep 36(6) (2016)
Arentson BW, Hayes EL, Zhu W, Singh H, Tanner JJ, Becker DF
RgGuinier 5.2 nm
Dmax 18.3 nm
VolumePorod 308 nm3

SASDE47 – Aldehyde dehydrogenase 16 from Loktanella sp. (LsALDH16): 2 mg/ml

Aldehyde dehydrogenase 16 from Loktanella sp. experimental SAS data
PYMOL model
Sample: Aldehyde dehydrogenase 16 from Loktanella sp. dimer, 161 kDa Loktanella sp. 3ANDIMAR09 protein
Buffer: 20 mM Tris-HCl, 100 mM NaCl, 2.0% glycerol, 0.5 mM Tris(3-hydroxypropyl)phosphine, pH: 8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2017 Dec 13
Crystal Structure of Aldehyde Dehydrogenase 16 Reveals Trans-Hierarchical Structural Similarity and a New Dimer. J Mol Biol (2018)
Liu LK, Tanner JJ
RgGuinier 3.6 nm
Dmax 10.9 nm
VolumePorod 202 nm3

SASDE57 – Aldehyde dehydrogenase 16 from Loktanella sp. (LsALDH16): 4 mg/ml

Aldehyde dehydrogenase 16 from Loktanella sp. experimental SAS data
PYMOL model
Sample: Aldehyde dehydrogenase 16 from Loktanella sp. dimer, 161 kDa Loktanella sp. 3ANDIMAR09 protein
Buffer: 20 mM Tris-HCl, 100 mM NaCl, 2.0% glycerol, 0.5 mM Tris(3-hydroxypropyl)phosphine, pH: 8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2017 Dec 13
Crystal Structure of Aldehyde Dehydrogenase 16 Reveals Trans-Hierarchical Structural Similarity and a New Dimer. J Mol Biol (2018)
Liu LK, Tanner JJ
RgGuinier 3.6 nm
Dmax 11.2 nm
VolumePorod 204 nm3

SASDE67 – Aldehyde dehydrogenase 16 from Loktanella sp. (LsALDH16): 6 mg/ml

Aldehyde dehydrogenase 16 from Loktanella sp. experimental SAS data
PYMOL model
Sample: Aldehyde dehydrogenase 16 from Loktanella sp. dimer, 161 kDa Loktanella sp. 3ANDIMAR09 protein
Buffer: 20 mM Tris-HCl, 100 mM NaCl, 2.0% glycerol, 0.5 mM Tris(3-hydroxypropyl)phosphine, pH: 8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2017 Dec 13
Crystal Structure of Aldehyde Dehydrogenase 16 Reveals Trans-Hierarchical Structural Similarity and a New Dimer. J Mol Biol (2018)
Liu LK, Tanner JJ
RgGuinier 3.5 nm
Dmax 10.6 nm
VolumePorod 207 nm3

SASDE77 – Aldehyde dehydrogenase 16 from Loktanella sp. (LsALDH16): 8 mg/ml

Aldehyde dehydrogenase 16 from Loktanella sp. experimental SAS data
PYMOL model
Sample: Aldehyde dehydrogenase 16 from Loktanella sp. dimer, 161 kDa Loktanella sp. 3ANDIMAR09 protein
Buffer: 20 mM Tris-HCl, 100 mM NaCl, 2.0% glycerol, 0.5 mM Tris(3-hydroxypropyl)phosphine, pH: 8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2017 Dec 13
Crystal Structure of Aldehyde Dehydrogenase 16 Reveals Trans-Hierarchical Structural Similarity and a New Dimer. J Mol Biol (2018)
Liu LK, Tanner JJ
RgGuinier 3.6 nm
Dmax 10.8 nm
VolumePorod 205 nm3

SASDE87 – Aldehyde dehydrogenase family 16 member A1 from Homo sapiens (HsALDH16A1): 1 mg/ml

Aldehyde dehydrogenase family 16 member A1 from Homo sapiens experimental SAS data
PYMOL model
Sample: Aldehyde dehydrogenase family 16 member A1 from Homo sapiens dimer, 171 kDa Homo sapiens protein
Buffer: 20 mM Tris-HCl, 100 mM NaCl, 2.0% glycerol, 0.5 mM Tris(3-hydroxypropyl)phosphine, pH: 8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2017 Dec 13
Crystal Structure of Aldehyde Dehydrogenase 16 Reveals Trans-Hierarchical Structural Similarity and a New Dimer. J Mol Biol (2018)
Liu LK, Tanner JJ
RgGuinier 3.6 nm
Dmax 10.9 nm
VolumePorod 230 nm3

SASDE97 – Aldehyde dehydrogenase family 16 member A1 from Homo sapiens (HsALDH16A1): 1.6 mg/ml

Aldehyde dehydrogenase family 16 member A1 from Homo sapiens experimental SAS data
PYMOL model
Sample: Aldehyde dehydrogenase family 16 member A1 from Homo sapiens dimer, 171 kDa Homo sapiens protein
Buffer: 20 mM Tris-HCl, 100 mM NaCl, 2.0% glycerol, 0.5 mM Tris(3-hydroxypropyl)phosphine, pH: 8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2017 Dec 13
Crystal Structure of Aldehyde Dehydrogenase 16 Reveals Trans-Hierarchical Structural Similarity and a New Dimer. J Mol Biol (2018)
Liu LK, Tanner JJ
RgGuinier 3.8 nm
Dmax 11.2 nm
VolumePorod 236 nm3

SASDEA7 – Aldehyde dehydrogenase family 16 member A1 from Homo sapiens (HsALDH16A1): 3.2 mg/ml

Aldehyde dehydrogenase family 16 member A1 from Homo sapiens experimental SAS data
PYMOL model
Sample: Aldehyde dehydrogenase family 16 member A1 from Homo sapiens dimer, 171 kDa Homo sapiens protein
Buffer: 20 mM Tris-HCl, 100 mM NaCl, 2.0% glycerol, 0.5 mM Tris(3-hydroxypropyl)phosphine, pH: 8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2017 Dec 13
Crystal Structure of Aldehyde Dehydrogenase 16 Reveals Trans-Hierarchical Structural Similarity and a New Dimer. J Mol Biol (2018)
Liu LK, Tanner JJ
RgGuinier 3.8 nm
Dmax 11.5 nm
VolumePorod 237 nm3

SASDJU7 – HIV-1 Primer Binding Site (PBS)-Segment RNA

Primer Binding Site-Segment experimental SAS data
DAMMIF model
Sample: Primer Binding Site-Segment monomer, 33 kDa HIV-1: pNL4-3 RNA
Buffer: 10 mM Tris, 140 mM KCl, 10 mM NaCl, 1 mM MgCl2, pH: 7.5
Experiment: SAXS data collected at BioCAT 18ID, Advanced Photon Source (APS), Argonne National Laboratory on 2015 Jul 29
The three-way junction structure of the HIV-1 PBS-segment binds host enzyme important for viral infectivity. Nucleic Acids Res (2021)
Song Z, Gremminger T, Singh G, Cheng Y, Li J, Qiu L, Ji J, Lange MJ, Zuo X, Chen SJ, Zou X, Boris-Lawrie K, Heng X
RgGuinier 3.4 nm
Dmax 12.8 nm
VolumePorod 87 nm3

SASDQ58 – Minimal proline dehydrogenase domain of proline utilization A (SmPutADeltaAlpha2) 2.3 mg/mL

Minimal proline dehydrogenase domain of proline utilization A (design #2) experimental SAS data
OTHER model
Sample: Minimal proline dehydrogenase domain of proline utilization A (design #2) dimer, 87 kDa Sinorhizobium meliloti protein
Buffer: 25 mM HEPES pH 7.6, 150 mM NaCl, and 1mM TCEP, pH: 7.6
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2022 Apr 12
Structure-based engineering of minimal Proline dehydrogenase domains for inhibitor discovery. Protein Eng Des Sel (2022)
Bogner AN, Ji J, Tanner JJ
RgGuinier 2.9 nm
Dmax 9.7 nm
VolumePorod 102 nm3

SASDQ68 – Minimal proline dehydrogenase domain of proline utilization A (SmPutADeltaAlpha2) 3.4 mg/mL

Minimal proline dehydrogenase domain of proline utilization A (design #2) experimental SAS data
OTHER model
Sample: Minimal proline dehydrogenase domain of proline utilization A (design #2) dimer, 87 kDa Sinorhizobium meliloti protein
Buffer: 25 mM HEPES pH 7.6, 150 mM NaCl, and 1mM TCEP, pH: 7.6
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2022 Apr 12
Structure-based engineering of minimal Proline dehydrogenase domains for inhibitor discovery. Protein Eng Des Sel (2022)
Bogner AN, Ji J, Tanner JJ
RgGuinier 3.0 nm
Dmax 9.8 nm
VolumePorod 108 nm3

SASDFK8 – GON7, the fifth subunit of human KEOPS

EKC/KEOPS complex subunit GON7 experimental SAS data
EKC/KEOPS complex subunit GON7 Kratky plot
Sample: EKC/KEOPS complex subunit GON7 monomer, 13 kDa Homo sapiens protein
Buffer: 20 mM MES, 200 mM NaCl, 5 mM β-mercaptoethanol, pH: 6.5
Experiment: SAXS data collected at SWING, SOLEIL on 2017 Mar 26
Defects in t6A tRNA modification due to GON7 and YRDC mutations lead to Galloway-Mowat syndrome. Nat Commun 10(1):3967 (2019)
...Missoury S, Snoek R, Patat J, Menara G, Collinet B, Liger D, Durand D, Gribouval O, Boyer O, Buscara L, Martin G, Machuca E, Nevo F, Lescop E, Braun DA, Boschat AC, Sanquer S, Guerrera IC, Revy P, Par...
RgGuinier 3.1 nm
Dmax 12.5 nm
VolumePorod 46 nm3

SASDFL8 – GON7, the fifth subunit of human KEOPS, bound to LAGE3-OSGEP (EKC/KEOPS complex subunit:Probable tRNA N6-adenosine threonylcarbamoyltransferase)

EKC/KEOPS complex subunit GON7EKC/KEOPS complex subunit LAGE3Probable tRNA N6-adenosine threonylcarbamoyltransferase experimental SAS data
OTHER model
Sample: EKC/KEOPS complex subunit GON7 monomer, 12 kDa Homo sapiens protein
EKC/KEOPS complex subunit LAGE3 monomer, 15 kDa Homo sapiens protein
Probable tRNA N6-adenosine threonylcarbamoyltransferase monomer, 36 kDa Homo sapiens protein
Buffer: 20 mM MES, 200 mM NaCl, 5 mM β-mercaptoethanol, pH: 6.5
Experiment: SAXS data collected at SWING, SOLEIL on 2017 May 12
Defects in t6A tRNA modification due to GON7 and YRDC mutations lead to Galloway-Mowat syndrome. Nat Commun 10(1):3967 (2019)
...Missoury S, Snoek R, Patat J, Menara G, Collinet B, Liger D, Durand D, Gribouval O, Boyer O, Buscara L, Martin G, Machuca E, Nevo F, Lescop E, Braun DA, Boschat AC, Sanquer S, Guerrera IC, Revy P, Par...
RgGuinier 3.1 nm
Dmax 11.5 nm
VolumePorod 91 nm3

SASDFM8 – GON7, the fifth subunit of human KEOPS, bound to the EKC/KEOPS complex subunit, LAGE3

EKC/KEOPS complex subunit GON7EKC/KEOPS complex subunit LAGE3 experimental SAS data
EKC/KEOPS complex subunit GON7 EKC/KEOPS complex subunit LAGE3 Kratky plot
Sample: EKC/KEOPS complex subunit GON7 dimer, 25 kDa Homo sapiens protein
EKC/KEOPS complex subunit LAGE3 dimer, 33 kDa Homo sapiens protein
Buffer: 20 mM MES, 200 mM NaCl, 5 mM β-mercaptoethanol, pH: 6.5
Experiment: SAXS data collected at SWING, SOLEIL on 2017 Mar 19
Defects in t6A tRNA modification due to GON7 and YRDC mutations lead to Galloway-Mowat syndrome. Nat Commun 10(1):3967 (2019)
...Missoury S, Snoek R, Patat J, Menara G, Collinet B, Liger D, Durand D, Gribouval O, Boyer O, Buscara L, Martin G, Machuca E, Nevo F, Lescop E, Braun DA, Boschat AC, Sanquer S, Guerrera IC, Revy P, Par...
RgGuinier 3.6 nm
Dmax 15.5 nm
VolumePorod 126 nm3

SASDD29 – Low load concentration of apo alpha-aminoadipic semialdehyde dehydrogenase (ALDH7A1) collected by SEC-SAXS

Alpha-aminoadipic semialdehyde dehydrogenase experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Alpha-aminoadipic semialdehyde dehydrogenase tetramer, 222 kDa Homo sapiens protein
Buffer: 50 mM Tris, 50 mM NaCl, 0.5 mM DTT, 5% (v/v) glycerol, pH: 7.8
Experiment: SAXS data collected at BioCAT 18ID, Advanced Photon Source (APS), Argonne National Laboratory on 2018 Feb 22
NAD+ Promotes Assembly of the Active Tetramer of Aldehyde Dehydrogenase 7A1. FEBS Lett (2018)
Korasick DA, White TA, Chakravarthy S, Tanner JJ
RgGuinier 3.5 nm
VolumePorod 212 nm3

SASDD39 – Medium load concentration of apo alpha-aminoadipic semialdehyde dehydrogenase (ALDH7A1) collected by SEC-SAXS

Alpha-aminoadipic semialdehyde dehydrogenase experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Alpha-aminoadipic semialdehyde dehydrogenase tetramer, 222 kDa Homo sapiens protein
Buffer: 50 mM Tris, 50 mM NaCl, 0.5 mM DTT, 5% (v/v) glycerol, pH: 7.8
Experiment: SAXS data collected at BioCAT 18ID, Advanced Photon Source (APS), Argonne National Laboratory on 2018 Feb 22
NAD+ Promotes Assembly of the Active Tetramer of Aldehyde Dehydrogenase 7A1. FEBS Lett (2018)
Korasick DA, White TA, Chakravarthy S, Tanner JJ
RgGuinier 3.7 nm
VolumePorod 229 nm3

SASDD49 – High load concentration of apo alpha-aminoadipic semialdehyde dehydrogenase (ALDH7A1) collected by SEC-SAXS

Alpha-aminoadipic semialdehyde dehydrogenase experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Alpha-aminoadipic semialdehyde dehydrogenase tetramer, 222 kDa Homo sapiens protein
Buffer: 50 mM Tris, 50 mM NaCl, 0.5 mM DTT, 5% (v/v) glycerol, pH: 7.8
Experiment: SAXS data collected at BioCAT 18ID, Advanced Photon Source (APS), Argonne National Laboratory on 2018 Feb 22
NAD+ Promotes Assembly of the Active Tetramer of Aldehyde Dehydrogenase 7A1. FEBS Lett (2018)
Korasick DA, White TA, Chakravarthy S, Tanner JJ
RgGuinier 3.7 nm
VolumePorod 238 nm3

SASDD59 – Low load concentration of alpha-aminoadipic semialdehyde dehydrogenase (ALDH7A1) with nicotinamide adenine dinucleotide (NAD) collected by SEC-SAXS

Alpha-aminoadipic semialdehyde dehydrogenase experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Alpha-aminoadipic semialdehyde dehydrogenase tetramer, 222 kDa Homo sapiens protein
Buffer: 50 mM Tris, 50 mM NaCl, 0.5 mM DTT, 5% (v/v) glycerol, 1 mM NAD, pH: 7.8
Experiment: SAXS data collected at BioCAT 18ID, Advanced Photon Source (APS), Argonne National Laboratory on 2018 Feb 22
NAD+ Promotes Assembly of the Active Tetramer of Aldehyde Dehydrogenase 7A1. FEBS Lett (2018)
Korasick DA, White TA, Chakravarthy S, Tanner JJ
RgGuinier 3.7 nm
VolumePorod 277 nm3

SASDD69 – Medium load concentration of alpha-aminoadipic semialdehyde dehydrogenase (ALDH7A1) with nicotinamide adenine dinucleotide (NAD) collected by SEC-SAXS

Alpha-aminoadipic semialdehyde dehydrogenase experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Alpha-aminoadipic semialdehyde dehydrogenase tetramer, 222 kDa Homo sapiens protein
Buffer: 50 mM Tris, 50 mM NaCl, 0.5 mM DTT, 5% (v/v) glycerol, 1 mM NAD, pH: 7.8
Experiment: SAXS data collected at BioCAT 18ID, Advanced Photon Source (APS), Argonne National Laboratory on 2018 Feb 22
NAD+ Promotes Assembly of the Active Tetramer of Aldehyde Dehydrogenase 7A1. FEBS Lett (2018)
Korasick DA, White TA, Chakravarthy S, Tanner JJ
RgGuinier 3.8 nm
VolumePorod 275 nm3

SASDD79 – High load concentration of alpha-aminoadipic semialdehyde dehydrogenase ALDH7A1 with nicotinamide adenine dinucleotide (NAD) collected by SEC-SAXS

Alpha-aminoadipic semialdehyde dehydrogenase experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Alpha-aminoadipic semialdehyde dehydrogenase tetramer, 222 kDa Homo sapiens protein
Buffer: 50 mM Tris, 50 mM NaCl, 0.5 mM DTT, 5% (v/v) glycerol, 1 mM NAD, pH: 7.8
Experiment: SAXS data collected at BioCAT 18ID, Advanced Photon Source (APS), Argonne National Laboratory on 2018 Feb 22
NAD+ Promotes Assembly of the Active Tetramer of Aldehyde Dehydrogenase 7A1. FEBS Lett (2018)
Korasick DA, White TA, Chakravarthy S, Tanner JJ
RgGuinier 3.8 nm
VolumePorod 277 nm3

SASDNA9 – Acinetobacter baumannii putrescine N-hydroxylase, 1 mg/mL

L-lysine 6-monooxygenase (NADPH-requiring) experimental SAS data
ALLOSMOD model
Sample: L-lysine 6-monooxygenase (NADPH-requiring) tetramer, 214 kDa Acinetobacter baumannii MRSN … protein
Buffer: 25 mM HEPES pH 7.5, 150 mM NaCl, 1 mM TCEP, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2022 Apr 14
Kinetic and Structural Characterization of a Flavin-Dependent Putrescine N-Hydroxylase from Acinetobacter baumannii. Biochemistry (2022)
Lyons NS, Bogner AN, Tanner JJ, Sobrado P
RgGuinier 4.1 nm
Dmax 15.0 nm
VolumePorod 394 nm3

SASDNB9 – Acinetobacter baumannii putrescine N-hydroxylase, 3 mg/mL

L-lysine 6-monooxygenase (NADPH-requiring) experimental SAS data
ALLOSMOD model
Sample: L-lysine 6-monooxygenase (NADPH-requiring) tetramer, 214 kDa Acinetobacter baumannii MRSN … protein
Buffer: 25 mM HEPES pH 7.5, 150 mM NaCl, 1 mM TCEP, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2022 Apr 14
Kinetic and Structural Characterization of a Flavin-Dependent Putrescine N-Hydroxylase from Acinetobacter baumannii. Biochemistry (2022)
Lyons NS, Bogner AN, Tanner JJ, Sobrado P
RgGuinier 4.1 nm
Dmax 15.0 nm
VolumePorod 390 nm3

SASDNC9 – Acinetobacter baumannii putrescine N-hydroxylase, 5 mg/mL

L-lysine 6-monooxygenase (NADPH-requiring) experimental SAS data
ALLOSMOD model
Sample: L-lysine 6-monooxygenase (NADPH-requiring) tetramer, 214 kDa Acinetobacter baumannii MRSN … protein
Buffer: 25 mM HEPES pH 7.5, 150 mM NaCl, 1 mM TCEP, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2022 Apr 14
Kinetic and Structural Characterization of a Flavin-Dependent Putrescine N-Hydroxylase from Acinetobacter baumannii. Biochemistry (2022)
Lyons NS, Bogner AN, Tanner JJ, Sobrado P
RgGuinier 4.2 nm
Dmax 15.0 nm
VolumePorod 390 nm3

SASDND9 – Acinetobacter baumannii putrescine N-hydroxylase, 6 mg/mL

L-lysine 6-monooxygenase (NADPH-requiring) experimental SAS data
ALLOSMOD model
Sample: L-lysine 6-monooxygenase (NADPH-requiring) tetramer, 214 kDa Acinetobacter baumannii MRSN … protein
Buffer: 25 mM HEPES pH 7.5, 150 mM NaCl, 1 mM TCEP, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2022 Apr 14
Kinetic and Structural Characterization of a Flavin-Dependent Putrescine N-Hydroxylase from Acinetobacter baumannii. Biochemistry (2022)
Lyons NS, Bogner AN, Tanner JJ, Sobrado P
RgGuinier 4.2 nm
Dmax 15.4 nm
VolumePorod 390 nm3

SASDNE9 – Acinetobacter baumannii putrescine N-hydroxylase, 8 mg/mL

L-lysine 6-monooxygenase (NADPH-requiring) experimental SAS data
ALLOSMOD model
Sample: L-lysine 6-monooxygenase (NADPH-requiring) tetramer, 214 kDa Acinetobacter baumannii MRSN … protein
Buffer: 25 mM HEPES pH 7.5, 150 mM NaCl, 1 mM TCEP, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2022 Apr 14
Kinetic and Structural Characterization of a Flavin-Dependent Putrescine N-Hydroxylase from Acinetobacter baumannii. Biochemistry (2022)
Lyons NS, Bogner AN, Tanner JJ, Sobrado P
RgGuinier 4.2 nm
Dmax 15.5 nm
VolumePorod 390 nm3

SASDNF9 – Acinetobacter baumannii putrescine N-hydroxylase, 9 mg/mL

L-lysine 6-monooxygenase (NADPH-requiring) experimental SAS data
ALLOSMOD model
Sample: L-lysine 6-monooxygenase (NADPH-requiring) tetramer, 214 kDa Acinetobacter baumannii MRSN … protein
Buffer: 25 mM HEPES pH 7.5, 150 mM NaCl, 1 mM TCEP, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2022 Apr 14
Kinetic and Structural Characterization of a Flavin-Dependent Putrescine N-Hydroxylase from Acinetobacter baumannii. Biochemistry (2022)
Lyons NS, Bogner AN, Tanner JJ, Sobrado P
RgGuinier 4.2 nm
Dmax 15.0 nm
VolumePorod 396 nm3